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An iterative modal analysis approach is developed to determine the e!ect of transverse
cracks on the dynamic behavior of simply supported undamped Bernoulli}Euler beams
subject to a moving mass. The presence of crack results in higher de#ections and alters the
beam response patterns. In particular, the largest de#ection in the beam for a given speed
takes longer to build up, and a discontinuity appears in the slope of the beam de#ected shape
at the crack location. Crack e!ects become more noticeable as crack depth increases. The
e!ect of the inertia force due to the moving mass is, in general, qualitatively similar and
additive to the e!ect of the crack. The exact e!ect of crack and mass depends on the speed,
time, crack size, crack location, and the moving mass level. Other approximate methods,
namely a stationary mass model and a single iteration technique, are also evaluated. The
stationary mass approach is useful for light moving masses ((20% of beam mass) and
cracks at mid-span. For other cases, the errors can be unacceptably large. The results of the
single-iteration approximation are quite close to the iterative modal analysis approach,
which indicates that this approximate solution is an excellent tool for the analysis of the
moving mass problem.

� 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

The e!ect of moving loads and masses on structures and machines is an important problem
both in the "eld of transportation and in the design of machining processes. A moving load
(or moving mass) produces larger de#ections and higher stresses than does an equivalent
load applied statically. These de#ections and stresses are functions of both time and speed of
the moving loads. This problem has received considerable attention in the literature.
Recent investigations include the work of Chen [1], who showed how a general "nite
element code may be used to e$ciently model bridge superstructures (such as I-shaped
girders) under variable moving load. Wu and Thompson [2] studied the non-linear
properties of railroad track foundations under a single moving wheel load. Marchesiello et
al. [3] studied the response of a multi-span plate subjected to a seven-degrees-of-freedom
moving vehicle. The study included torsional modes, plate surface irregularities, and
moving load speed. Todd and Vohra [4] presented a theoretical approach to reconstruct
the beam shape under static or moving load from strain measurements at a number of
locations along beam length and taking shear deformation into account. The method was
successfully applied to a two-span beam under a static load, and a simply supported beam
under a moving load.

On the other hand, there has been growing interest in studying the vibration of cracked
components and structures. The presence of cracks in a structure introduces local #exibility
0022-460X/02/$35.00 � 2002 Published by Elsevier Science Ltd.



m
0

ξ

(m
0
 g)

Lc 

L

ξ m
0

x 

v

(a)

(b)

Figure 1. (a) Simple beam with a transverse crack subjected to a moving mass. (b) Stationary mass (SM) model.
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and therefore alters the dynamic response of the structure. In one estimate, over
500 papers on the subject were published in two decades [5]. Recent investigations in this
area include beams with multiple cracks [6], beams with breathing cracks [7], e!ect of
cracks in rotating bladed disks [8], and non-linear response of a beam with a number of
breathing cracks [9].

In most studies on transverse vibration of beams, the e!ect of a crack in the beam is
determined based on modelling the cracked section as a rotational spring connecting two
undamaged beam segments. Chondros and Dimarogonas [10] used "nite element
techniques to develop the terms of a (6�6) matrix for an arbitrary loading of a cracked
beam section. In addition to our experimental evidence, there is a substantial body of
evidence in the literature that con"rms the usefulness of this spring model (see reference [5]
for listing). Recently, Chondros and Dimarogonas [11] developed a continuous cracked
beam theory to rigorously include singularities at the crack tip into the equations of motion.
Their preliminary results con"rm that the rotational spring model is a good approximation
since its results agree well with the more rigorous theory. In this light, the rotational spring
model will be used in this study to account for the crack compliance.

Very few studies were reported in the literature on the e!ect of cracks on the moving load
or moving mass problems. Parhi and Behera [12] used the Runge}Kutta method to
determine the de#ection of a cracked circular shaft subjected to a moving mass. Recently,
Mahmoud [13] used an equivalent static load approach to determine the stress intensity
factors for a single- or a double-edge crack in a beam subjected to a moving load.

In this study, crack e!ects on the dynamic response of a beam subject to a moving mass
are investigated. Attention is focused on the fundamental problem of simply supported,
Bernoulli}Euler undamped beams, Figure 1(a). The solution of the undamaged beam is
presented "rst. Then, an iterative modal analysis solution is developed to include crack
e!ects on the beam response. In addition, an approximate stationary mass (SM) approach,
Figure 1(b), recommended by Fryba [14] in his well-known monograph is also evaluated
relative to the rigorous modal analysis developed herein. The SM method does not require
iterations to account for the inertia force due to the moving mass. Numerical results are
presented to show how the crack presence a!ects the de#ection characteristics of the beam.
The rotational spring model employed to model the crack is valid for open cracks only. The
analysis does not include longitudinal motion or coupling between bending and torsional
motions.
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2. UNDAMAGED BEAM

The di!erential equation of a Bernoulli}Euler undamped beam subject to a moving mass
is

EI��w(x, t)/�x�#m ��w(x, t)/�t�"m
�
(g!wK (x, t)) �(x!�), (1)

where E is Young's modulus and I is the second moment of area of the beam cross-section
about the>-axis, w is the transverse de#ection (in Z direction),wK (x, t) is the acceleration, t is
the time (t"0 as the moving mass enters the beam from left to right, Figure 1(a)), m is the
mass per unit length, m

�
is the moving mass, g is the gravitational acceleration, � is the

Dirac delta distribution, �"�t, and � is the constant mass speed. The boundary conditions
for a simply supported beam are: w(0, t)"w (¸, t)"��w (0, t)/�x�"��w (¸, t)/�x�"0, and
the initial conditions are: w (x, 0)"�w(x, 0)/�t"0.

The di$culty with equation (1) is that the unknown de#ection w (x, t) appears on both
sides of the equation. Therefore, an iterative approach is used by rewriting the equation as

EI��w
�
(x, t)/�x�#m ��w

�
(x, t)/�t�"P

���
�(x!�), (2)

in which

P
���

"m
�
(g!wK

���
(x, t)), (3)

i.e., P represents both the weight of, and the inertia force due to, the moving mass.
In the "rst iteration (k"1), wK

�
(x, t) is set to zero in the right-hand side of equation (3) and

the resulting P is substituted into equation (2). Equation (2) is then solved to obtain w
�
(x, t),

which, in fact, is the de#ection due to a moving load of negligible mass. Then, w
�
(x, t) is

numerically di!erentiated to obtain wK
�
, and then equations (3) and (2) are used to obtain

w
�
(x, t), which is a better estimate of the de#ection. This process is repeated until

convergence occurs, i.e., stable values of w are obtained. A somewhat similar iterative
approach was used for uncracked beams by Michaltos et al. [15].

The solution of the kth iteration of equation (2) may be written as

w
�
(x, t)"

�
�
���

�
�
(x)q

�
(t), (4)

where �
�
(x) is the eigenfunction, and q

�
(t) is the generalized displacement (the subscript

i denotes the vibration mode number). Substituting equation (4) into equation (2), we get

m
��
qK
�
(t)#k

��
q
�
(t)"Q

�
(t), (5)

where m
��
is the generalized mass, Q

�
is the generalized force, and k

��
is the generalized

sti!ness;

Q
�
(t)"�

�

�

P�(x!�)�
�
(x) dx, (6)

m
��
"m�

�

�

��
�
(x) dx. (7)

The solution of equation (5) is

q
�
(t)"�

�

�

�
�
(t!�)Q

�
(�) d�, (8)
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where �
�
(t) is the impulse response of the system which is (for undamped beams)

�
�
(t)"(1/m

��
�

�
) sin(�

�
t), (9)

Q
�
(t)"P�

�
(�t) for 0)t)¹ and Q

�
(t)"0 for t'¹, (10)

in which ¹"¸/� is the total time needed to traverse the beam. Substituting equations (9)
and (10) into equation (8) one gets for the kth iteration

q
�
(t)"(1/m

��
�

�
)�

�

�

P
���

�
�
(��) sin�

�
(t!�) d�, (11)

where

P
���

"m
�
(g!wK

���
(��, t)), (12)

which shows that P
���

is not constant, but changes as the moving mass traverses the beam
from �"0 to t.

For the undamaged beam, the eigenvalues �
�
, and the eigen-functions �

�
are

��
�
"EI(i�)�/m¸�, �

�
(x)"sin(i�x/¸). (13)

3. BEAM WITH A TRANSVERSE CRACK

A transverse crack in the beam increases the #exibility and therefore, reduces the
eigenvalues and alters the eigenfunctions. The eigenvalues �

�
and the eigenfunctions �

�
for

the cracked beam must be used in the analysis instead of equation (13).
The eigenvalues and eigenfunctions for the cracked beam were calculated using

a numerical approach that will be referred to as the m-matrix approach. The beam with
a transverse crack (Figure 1(a)) is discretized into n elements (or segments), as shown in
Figure 2(a). The mass of each element (m

�
) is lumped at the center of the element. These

masses are then treated as being connected by massless rods having #exural rigidity EI.
A typical segment is shown in Figure 2(b). FollowingMyklestad [16] and Tse et al. [17], the
state at section i (immediately to the right of m

�
) and the state at section (i!1) (immediately

to the right of m
���

), with the inertia force on m
i

added as shown in Figure 2(b), are related
as follows (for undamped Euler}Bernoulli beams):

!w
�

	
�
M

�
<

�

"

1 ¸ l�/2EI l�/6EI

0 1 l/EI l�/2EI

0 0 1 l


 ��m
�
l � �

!w
���

	
���
M

���
<

���

or

S
�
�"[Q

�
] S

���
� , (14)

where l is the distance between the masses m
�
and m

���
, w is the de#ection, 	 is the rotation,

� is the frequency of vibration, M"M
�
is the bending moment, <"<

�
is the shearing

force, 
"(m
�
��), �"(m

�
�� l�)/(2EI), �"1#(m

�
�� l�)/6EI. The boundary conditions for

a simply supported beam are: w
�
"M

�
"M

���
"w

���
"0.

If a transverse crack exists in the beam, [Q] has to be modi"ed to include the additional
#exibility due to the crack presence. The steps to do this are as follows. First, the
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Figure 2. (a) Beam discretization. (b) Internal forces acting on a beam segment.
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discretization of the beam (Figure 2(a)) should be made such that the crack is at the center of
element j, and therefore, the crack is located at mass m

	
. Due to the crack presence

	
	
"	

	�
#C M

	
, where 	

	
is the rotation to the right of m

	
in the presence of a crack, 	

	�
is

the rotation to the right of m
	
if the crack were absent, C is the crack compliance,M

	
is the

bending moment at mass m
	
. Now the modi"ed recurrence equations for the section to the

right of mass m
	
are

S
	
�"[m

	
] S

	��
�, (15)

where

[m
	
]"

1 ¸ l�/2EI l�/6EI

0 1 (l/EI)#C (l�/2EI)#Cl

0 0 1 l


 ��m
	
l � �

.

Equations (14) and (15) are used to determine the overall beam analysis in the form:

S
���

�"[Q
���

] [Q
�
] . . . [m

	
] [Q

	��
]2[Q

�
] [Q

�
] S

�
�, i.e.,

S
���

�"[B] S
�
� (16)

subject to the boundary conditions for a simply supported beam, i.e.,

B
��

B
��

!B
��

B
��

"0. (17)

Equation (17) is the basis for determining the eigenvalues (�) using a root searching
technique that was developed based on the well-known Newton}Raphson approach.
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Convergence to the desired roots was achieved with no di$culty when the eigenvalues of
the uncracked beam were used as initial values for the cracked beam cases. The
eigenfunctions may then be obtained by using equation (14).

The crack compliance C may be determined by modelling the cracked section as
a rotational spring connecting two undamaged beam segments. The sti!ness of the
rotational spring is determined using fracture mechanics and is incorporated in the
m-matrix approach. In this study, an expression for C was derived by using the results
published by Tada [18] who gave the angle of rotation of a uniform strip with an edge crack
under pure bending moment. In this case, for a rectangular section of height &h' with a crack
of depth 0a', C can be shown to be

C"

2h

EI�
a/h

1!a/h�
�
5)93!19)69(a/h)#37)14(a/h)�!35)84(a/h)�#13)12(a/h)��. (18)

4. STATIONARY MASS (SM) MODEL

Fryba [14] recommended an approximate model (denoted herein SM) to account for the
inertia force due to the moving mass. The model is based on adding a stationary
concentrated mass (point mass), equivalent to the moving mass (m

�
), at the beam center and

then calculate the dynamic response due to a moving load equivalent to (m
�
g), Figure 1(b).

In terms of the present formulation, the generalized de#ection for the SM model is

q
�
(t)"(1/m

��
�

�
)�

�

�

(m
�
g) �

�
(��) sin�

�
(t!�) d�. (19)

The eigenvalues �
�
and the eigenfunctions �

�
in this case are determined using them-matrix

approach (equations (17) and (14)) but adding a concentrated mass at the beam center by
setting 
"(m



#m

�
)��� only at the center segment of the beam, where m



is the mass of

this center segment. Also, the generalized mass (m
��
) for the SM model is larger than m

��
for

the uniform beam by the amount [m
�
��

�
(¸/2)].

5. CRACK EFFECT ON THE DEFLECTION RESPONSE DUE TO A MOVING MASS

A transverse crack in the beam increases the #exibility and therefore, changes the free
vibration response such that it reduces the eigenvalues and alters the eigenfunctions [19].
Crack presence also changes beam response to moving loads or masses. Equations (11)
and (4) are used to obtain the dynamic response of a simple beam subjected to a moving
mass. To illustrate this response, a beam of length 50 m, height h"1)0 m and width
b"0)5 m was considered (E"2)1�10�� Pa, density"7860 kg/m�). The numerical results
presented in the following are normalized in order to be valid for linear elastic,
homogenous, isotropic materials. These results were obtained using six modes of vibration
and the beam discretized into 100 segments. Results obtained in this way were found
identical to the results obtained using nine modes of vibration with the beam discretized
into 400 segments.

Figure 3 shows the de#ection}time response at mid-span for the undamaged beam and
for a cracked beam (crack mid-span with a/h"0)5) and for di!erent moving mass speeds
(the moving mass is 20% of the total beammass). The de#ection}time response (also known
as the in#uence line for the de#ection) is normalized relative to the value (m

�
g)¸�/(48EI),

which is the static de#ection due to m
�
at mid-span. The "gure also includes the response

due to a moving load to show the e!ect of the inertia force due to the moving mass on the
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de#ection. The "gure shows that crack presence increases beam de#ection and somewhat
alters the response pattern. In particular, at a given moving mass speed it takes longer to
build up the largest de#ection in cracked beams than in the undamaged ones.

Figure 4 shows the e!ect of a crack at mid-span on the de#ected beam shape for
�"40 m/s. When the moving mass reaches the mid-span region (t/¹"0)5}0.8), the crack
produces a noticeable discontinuity in the slope of the de#ected beam. As the moving mass
approaches the end of the beam (t/¹"0)96), the cracked beam de#ects downwards rather
than upwards as in the undamaged beam.

Figures 3 and 4 show that the e!ect of crack presence is qualitatively similar for moving
loads or moving masses, and that the inertia force due to the moving mass has an e!ect that
is, in general, both similar and additive to the crack e!ect. Figure 5 illustrates the e!ect of
the level of inertia force due to the moving mass on the normalized de#ection (ND) at
mid-span for a mass speed �"40 m/s. The "gure shows that for the undamaged beam, the
heavier the movingmass the larger theND, and the longer it takes to build up the maximum
de#ection. The crack presence compounds these e!ects.

Crack e!ect on the beam free vibration generally increases with the increase in crack
depth [19]. The same trend is true for the dynamic response due to a moving mass;
Figure 6(a) shows that theND time response at mid-span for a given mass speed increases as
the crack depth increases. In addition, the peak downward de#ection takes longer to build
up for larger cracks. Moreover, the beam changes its pattern of de#ection as the mass leaves
the beam from upward de#ection for the undamaged beam to increasingly downwards as
the crack size increases. Figure 6(b) shows a comparison of the moving load and the moving
mass responses for crack sizes a/h"0)2, 0)6. In both cases, the inertia force due to the
moving mass increases the ND relative to that of the moving load de#ection.
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As pointed out before, it was decided to evaluate the stationary mass (SM) approach
recommended by Fryba [14], since it does not require any iterations to account for the
inertia force due to the moving mass. However, the SM method requires the calculation of
the eigenvalues and eigenfunctions for the beam with a concentrated mass (point mass)
lumped at mid-span. This was achieved using the m-matrix approach, and some results are
presented in Figure 7. Figure 7(a) shows the variation of the "rst three odd eigenvalues
(normalized relative to the undamaged beam without a concentrated mass) with the level
of the point stationary mass (as a percentage of the total beam mass). The "gure shows that
the eigenvalues decrease with the increase of the magnitude of the point mass. It also shows
the same trend for the beamwhen a crack (a/h"0)5) exists mid-span. Figure 7(b) depicts the
e!ect of a point mass (20% of the total beam mass) on the mode shapes for both the
undamaged and cracked beams. The results show that the crack produces a discontinuity in
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the slope of the beam shape, and that the point mass distorts the mode shape in the middle.
The modal results for the point mass were used with equations (19) and (4) to determine the
beam response. Some results are shown in Figures 8}10.

Figure 8 shows a comparison of the time response at mid-span obtained by the SM
method (equation (19)) and the iterative approach (equation (11)) for �"40 m/s. The results
of the SM are in fair agreement with the iterative approach for both cracked and uncracked
beams. The "gure also includes the results of equation (11) but with one iteration only. This
was done to determine whether the accuracy of the modal analysis is acceptable if a "rst
approximation replaced the iterative approach. The results presented in Figure 8, and other
results for a large number of cases but not reported here for the sake of brevity, show that
this approximation is quite acceptable since its results di!ered very little from results
obtained after numerous iterations until convergence was achieved. This one-iteration
approximation is useful since it permits us to generate graphs like Figures 9 and 10 that
show the e!ect of speed on the beam dynamic response.

The e!ect of speed and crack presence on mid-span de#ection is shown in Figure 9 for
t/¹"0)6 and in Figure 10 for t/¹"1. The speed is normalized as �"�/�



to allow

comparison of the responses of di!erent undamaged beams, where �


"�

��
¸/� is the

characteristic speed and �
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is the fundamental natural frequency of the undamaged
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mass (a/h"0)5), } } }�} } } moving load (no crack), } } }�} } } moving load (a/h"0)5), } } } } } }
SM (no crack), } } } } } SM (a/h"0)5).
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uniform beam. When the moving load reaches 0.6 of the span length (i.e., t/¹"0)6;
Figure 9) and for slow speeds (small �), theND oscillates around 1)0. This is because the time
response oscillates about the quasi-static (crawling) time response curve as shown in
Figure 3. For moderate speeds (0)2(�(0)6), the largest de#ection occurs when the
moving mass is close to mid-span. The general e!ect of the inertia force due the moving
mass is to increase the beam de#ection, but the exact e!ect depends on the speed and time.
For fast speeds (�'0)6), the largestND is achieved as t/¹ approaches 1. This is depicted in
Figure 10 that shows also the e!ect of speed and crack presence on mid- span de#ection for
t/¹"1.

The results presented in Figures 8}10, and other results not reported here for the sake of
brevity, show that the SM model is a useful approximation to a di$cult engineering
problem in the range m

�
(20% of beam mass. For heavier moving masses, the error in the

results of the SM approximation could become substantial.
The results presented in the foregoing sections show that crack presence, in general, leads

to larger de#ections in the beam, but the e!ect depends on the speed (as depicted in
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Figure 10. Comparison of modal analysis and (SM) de#ection at mid-span for uncracked and a/h"0)5 mid-
span, mass 20%; t/¹"1 (� is the normalized moving mass speed). } } }�} } } moving load (no crack), } }}�} } }
moving load (a/h"0)5), ** moving mass (no crack), *�* moving mass (a/h"0)5), } } } } } } SM (no
crack), } } } } } SM (a/h"0)5).
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Figures 3, 9 and 10), the time (Figures 3 and 4), the magnitude of the moving mass (Figure 5),
and crack size (Figure 6). The de#ection is largest at or close to beam mid-span for the
simply supported beam investigated. The inertia force due to the moving mass has a similar
e!ect.

The e!ect of crack location on the dynamic response was also investigated in the range
0)5(¸



/¸(0)65. The e!ects of crack size and the inertia force of the moving mass

are qualitatively similar to the results presented above for ¸


/¸"0)5 (i.e., mid-span). The

accuracy of the SM method, however, was less than that for the mid-span case. The
single-iteration solution was in excellent agreement with the iterative modal analysis
(equation (11)).

6. CONCLUSION

The e!ect of cracks on the dynamic behavior of simply supported undamped
Bernoulli}Euler beams subject to a moving mass was determined. Crack presence results in
higher de#ections and alters the beam response patterns. In particular, the largest de#ection
in the beam for a given speed takes longer to build up, and a discontinuity appears in the
slope of the beam-de#ected shape at the crack location. Crack e!ects become more
noticeable as crack depth increases. The e!ect of the inertia force due to the moving mass is,
in general, qualitatively similar and additive to the e!ect of the crack. The exact e!ect of
crack and mass depends on the speed, time, crack size, crack location, and the moving mass
level.

The stationary mass (SM) approach is useful for light moving masses ((20% of the
beam mass) and cracks at mid-span. For other cases, the errors can be unacceptably large.
The results of the single-iteration approximation are quite close to the iterative modal
analysis approach, which indicates that this approximate solution is an excellent tool for the
analysis of the moving mass problem.

It should be borne in mind that the e!ects of the moving mass on the displacement are
accompanied also by e!ects on the beam strength and crack stress intensity factors, which is
the subject of an ongoing investigation.
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APPENDIX: NOMENCLATURE

a crack size
b beam width
h beam height
k
��

generalized sti!ness
l distance between masses m

�
and m

���m mass per unit length
m

�
the moving mass

m
�

mass of beam element
m

��
generalized mass
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P equivalent moving load
q
�

generalized displacement
t time
� speed of the moving load
�



characteristic speed or critical speed
w transverse de#ection
x co-ordinate along the beam
C crack compliance
E Young's modulus
I the second moment of area of the beam cross-section
¸ beam span
¸



crack location
M bending moment
Q

�
generalized force

¹ the total time needed to traverse the beam
< shearing force

� normalized speed
� Dirac delta function
	 Rotation of beam cross-section
�

�
eigenvalues

� distance of the load from left support
�
�

the impulse response of the system
�

�
eigenfunction

� frequency of vibration
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